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Diffusion coefficients have been obtained for Hy, D,, and T, as a function of temperature in

both Cu and Ni.

The absolute-rate-theory formalism as proposed by Vineyard provides an

adequate explanation of the results if quantum corrections and anharmonic effects are taken

into consideration.
proximation that apparently holds for Cu.

I. INTRODUCTION

A convenient and, in fact, customary starting
point for a theoretical discussion of solid-state
diffusion coefficients is Eq. (1), as provided by
absolute-rate theory

D ___fv"‘ PLUMLP AH*/RT (1)

The symbols in this familiar equation are f, de-
noting the correlation coefficient; a hypothetical
vibrational frequency »*; and AS* and AH*, which
are the entropy and enthalpy of activation and in-
clude values for the formation of lattice vacancies
in the case of vacancy diffusion. There have been
several theoretical attempts leading to relation-
ships other than Eq. (1). However, it is probably
safe to say that only absolute-rate theory has sup-
plied a relationship readily amenable to experi-
mental verification; consequently, it has provided
the framework for most theoretical studies. Never-
theless, the validity of absolute-rate theory has
been repeatedly challenged throughout its existence,
and it has been difficult to conceive of experiments
which provide unequivocal testimony. The apparent
difficulties lie not so much with AS* and AH*, which
frequently can be measured by independent methods,
but in visualizing the origin of v*. Over a decade
ago, Vineyard'® supplied a straightforward theoret-
ical interpretation for u*; our experiments were
largely aimed at verifying his model. To do this,
we measured the diffusion coefficients for all three
isotopes of hydrogen, for the mass dependence of
v* as predicted by the Vineyard theory would seem
to provide a critical test of theory.

There were three major reasons for selecting
hydrogen as the diffusing species: First, the rela-
tive mass variation is the greatest of any element;
second, we had three equally suitable isotopes
rather than the customary two,; and third, hydrogen
diffuses interstitially. The third condition greatly
simplifies the theoretical interpretation, since the
correlation coefficient for interstitial diffusion is
unity. The matrices, or host elements, Ni and Cu,
were selected because of the relatively high solu-
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The Ni results are especially affected by the failure of the harmonic ap-

bility of hydrogen in them, and also because they
are readily obtainable as high-purity single crys-
tals. There are two previous investigations of the
isotope effect in which H, and D, were employed.
Eichenauer, Loser, and Witte? (ELW) measured
diffusion coefficients in Ni and Cu, and concluded
that their results were in accord with the predic-
tions of simple rate theory. Ebisuzaki, Kass, and
O’Keefe ® (EKO) made additional measurements in
Ni only, and by applying quantum-mechanical cor-
rections, brought their results into better accord
with theory. Our measurements both extend the
temperature range and include an additional iso-
tope, tritium. This additional information gives
us a better insight into the theory and clearly
points out the limitations of the previous inter-
pretation. Two interesting “anomalies” observed
by both ELW and EKO are clearly shown by our
results: First, the measured values of D,/D; are
much smaller than predicted by the simple rela-
tionship

Do/Dy=[My/M,]"

in both Ni and Cu; and second, the ratio of the dif-
fusion coefficients shows a substantial dependence
upon temperature. An explanation of these obser-
vations will be presented in Sec. IV of this paper.

II. EXPERIMENTAL

The raw data are obtained by measuring the rate
at which a specimen, initially saturated with hy-
drogen, outgasses. This method directly yields
values for D, and offers a significant advantage
over the permeation method, which yields only the
product of the diffusion and solubility. In principle,
one can also derive values for the solubility from
the non-steady-state method, but the results in the
present instance were erratic.

The metal specimens were spherical single crys-
tals grown from 99.999% pure Ni and Cu. Although
of initial high purity, the isotopes H, and D, were
further purified by passing them over a charcoal-
filled cold trap. The tritium was obtained from
the decomposition of uranium tritide.
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FIG. 1. A schematic diagram showing the essential
features of experimental apparatus.

A high-vacuum diffusion apparatus as shown in
Fig. 1 allows saturation of the specimen at an ele-
vated temperature, followed by a quick thermal
quench attained by quickly lowering it into a copper
chill chamber maintained at liquid-nitrogen tem-
perature. While the saturated sample remains in
the chill chamber, the upper portion of the vacuum
chamber is baked and pumped down to a background
pressure of 10°7-10"® Torr. The specimen is then
again raised into the hot zone and brought rapidly
to the desired temperature by induction heating.
The rise time required to achieve constant tem-
perature is approximately 1 min, after which it
remains constant to within +1 °C. The pressure
of the evolving gas was measured with an ion gauge.
The various isotopes were introduced successively
into the system without opening it to the atmosphere.
A mass spectrometer was initially incorporated
into the system to determine the amount of any
cross contamination between the various isotopes.
However, the residual amount of the preceding iso-
tope always proved to be less than the limit of the
detection. Having thus been convinced that the
degree of cross contamination was negligible, we
permanently removed the mass spectrometer from
the system.

The ion gauges located on both sides of the cali-
brated leak (see Fig. 1) provide the data necessary
for the solution of Eq. (2)

dP/dt=Qs+Qy~Q, , (2)

which states that the rate of change of the pressure
is simply the difference between the flux of gas
emitted by the specimen (Q,), background outgas-
sing (@,), and the flux through the orifice (Q,).
Neglecting the back pressure, the flow through an
orifice is related to the pressure by the Knudsen
relationship at low pressures, that is, Eq. (3),
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where A is the area of the orifice and m is the
molecular weight of the gas. The other symbols
have their usual significance. The flux-out of the
sample is given by Eq. (4)

_d(cv)

a )

Qs =
where C is the average concentration of gas within
the sample and is related to the diffusion coefficient
through Eq. (5), which is appropriate for diffusion
out of a sphere

C-C; 8 s~ 1 _22p2
Cf—_(:_i: 1- - §;1 P e . (5)
In Eq. (5), C, C;, and C, are the average, initial,
and final concentrations; » is the radius of the
sphere; and D and ¢ have their usual meanings. At
sufficiently long times, one can neglect all but the
initial term in the summation and so obtain Eq. (6)

C_Cl"*l_%e-t/f (6)

Cc,-C; ’

where 7=72/72D. Substituting for C in Eq. (4) and
assuming C,=0, we obtain for @,

Qs=(6C,/n2r)e T | (7
We can now set
a=6Cy/m%r, B=[A/(2.24x10%](26T/m)*?,

Qo =PBPy .

By substituting into Eq. (2) and integrating, we ar-
rive at Eq. (8)

P -t/T

NS vl y LR (8)
where P,, the background pressure, is usually
about 5x 10”7 Torr. A proper choice of orifice
diameter causes the second term to decrease much
more rapidly than the first; hence, at sufficiently
long times, In(P - P,) vs ¢ yields a linear plot from
which the diffusion coefficient is directly calculable.
A typical outgassing curve is shown in Fig. 2.

III. RESULTS

Our measurements in Cu extend from 450 to
925 °C, and in Ni from 400 to 1000 °C. These
temperature ranges are more than twice as large
as those of previous investigations 2® and, hence,
allow a more accurate calculation of AH*, the
enthalpy of activation. In order to facilitate further
analyses or comparisons by the interested reader,
we have tabulated all the measured values in Table I.
These same data are displayed graphically in Fig. 3.
An unconstrained fit to the familiar Arrhenius re-
lationship produced the values of AH* and D° listed
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FIG. 2. A plot of the pressure difference across the
orifice as a function of time. These data represent the
rate of outgassing of H, from a single-crystal sphere of
Ni at 600 °C. A value of D is calculated from the linear
segment of the graph by applying Eq. (7).

in Table II. The error o is simply the average
deviation from the best straight line through all
the data points. There is no measurable system-
atic departure from the Arrhenius relationship in
any of the six systems investigated. As expected
from previous investigations, both D° and AH* de-
crease with increasing isotopic mass.

TABLE I. Measured diffusion coefficients.

T(°K) D, D, Dy
Ni
673.2 6.15 x10°6 oo
723 9.89 x107¢ 8.26 x107¢ 7.76 x107¢
773 1.50 x107° 1.29x10°° 1.16 x107°
873 3.10 x10°° 2.62x10"° 2.27 x10"°
973 5.35 x107° 4.53x10%° 3.84 x10°°
1123 9.93 x107° 8.47 x107® 7.11 x10°5
1198 1.37 x10°* 1.10 x10¢ 9.37 x107°
1273 1.71 x1074 1.31x10™ 1.23 x10*
Cu
723 1.75 x107° 1.64 x107° 1.43 x10°°
773 2.72x107° 2.33x10%° 2.12x10°°
873 5.42 %10 4.73x107° 4,00 %1075
973 9.18 x10-% 7.31x107% 6.54 x1075
1073 1.42 x10™ 1.22x10™ 1.06 x10™*
1173 2.13 x107*
1198 2.32x10"* eee

It is convenient to compare the diffusion coeffi-
cients of D and T to that of hydrogen in terms of
Eq. (9)

DH/D4=D2| /D(: e-(AHﬁ-AH;)/RT , (9)

where the subscript ¢ denotes either D or T. The
pertinent values are given in Table II. It is note-
worthy that D%/D%< (M,/My)*? for Ni, but is larger
in both cases for Cu.

IV. DISCUSSION

In terms of absolute-rate theory, we can consider
the average jump frequency I for the diffusing atom
to be given by the probability Pg that the system
can reach a saddle surface (defined by maxima in
the potential energy for any given diffusion path)
times a frequency v, which corresponds to the rate
at which the atom crosses this surface. Pg can be
written as the ratio of a partition function Z¢ for
the system constrained to the saddle surface to the
partition function Z for the total system. Thus, we
can write

T=vp25/Z . (10a)

For a harmonic system in the classical limit,
this leads to Eq. (10b), a well-known expression®
for the jump frequency

3N+3 3N+2 , .
rc=(n u,/ i u,)e'“ e (10b)
i=1 i=1

The products run over the 3N normal modes of
the lattice plus the three additional modes of the
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FIG. 3. Arrhenius plots for Hy, D,, and T, diffusing in Cu
(upper graphs) and Ni (lower graphs).
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TABLE II. Separate Arrhenius fits to data.

H D T
Ni
10°Dg(cm?/sec) 7.04+0.21  5.27£0.28 4.32:0.21
AH*(cal) 9434 + 52 9243 £ 96 9102+ 87
o +1.81% +2.73% £2.49%
Cu
10°Dylcm?/sec) 11.31:0.40 7.30£1.05 6.12+0.51
AH*(cal) 9286 + 65 8794 + 244 8717+141
¢ +£1.72% +4.55% £2.62%
Ratios of diffusion coefficients in terms of Dy and AH*
DY/D)  AHj-AHY(cal) Investigation
‘Dy/Dp  1.34 191 present
Ni{Dg/DD 1.41 270 ELW
Dy/Dy  1.63 332 present
Dy /Dy 1.55 492 present
Cu {DH/DD 1.85 710 ELW
Dy/Dy 1.85 569 present

interstitial atom in its ground state or equilibrium
configuration (EC), or the two additional modes
when in the excited state. The excited state, of
course, corresponds to the diffusing atom in the
saddle-point configuration (SPC), which is at a
potential A¢* above the potential in the equilibrium
state. Equation (10b) was apparently first derived
by Vineyard, ! but only in its classical limit. More
recently, several authors, beginning with Le Claire,*
have done much to clarify the importance of the
quantum-mechanical effects. EKO have taken them
into account in their treatment of the diffusion of
hydrogen in Ni, while Franklin® has also included
anharmonic effects.

In its simplest, non-quantum-mechanical form,
absolute-rate theory yields for the mass dependence
of D the familiar result given by Eq. (11)

Da/DB=rz/r§=(Mﬂ/Ma)1/z . (11)

It will be instructive to review briefly the deriva-
tion of Eq. (11) if we are to ultimately understand
why it fails, as it does, to coincide with the experi-
mental values. The products of the normal-mode
frequencies for both ground and excited states are
given by Eqs. (12a) and (12b):

3N43 (det g, )2 M3

;.Hx V1= (2n)Fes o Q)7 o (12a)

3N+2 det ’\1/2 3N42 1

I u;=( et )" 1 (126)
j=1 (M/)

it (zﬂ)sma
Hence, we can write for the jump frequency

d t 1/2 /3N+3 .
r- g:,;”z( I M

3N+2 , .
II Mj"l/z) e-A0 /RT .
i=1 i=1
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By making use of the product rule, we have

det V2 1 e
rz[dTgéj] Wem T (13)

where M is the mass associated with the transition
mode. Since the force constants 8;; and ﬁ:, are
mass-independent quantities, we can immediately
obtain Eq. (11) by simply writing the quotient of
two equations such as Eq. (13) for each of two dif-
ferent isotopic masses if the assumption is made
that M is the mass of the diffusing atom.

The isotopic variation of the diffusion coefficient
for several chemically diverse systems conforms
quite accurately to Eq. (11)—for example, self-
diffusion ®7 in Pd and in Ag as well as the diffusion®
of Na in NaCl and C in Fe. ® However, significant
departure from the square-root relationship has
been observed previously for systems other than
those reported here, e.g., the diffusion® of %Zn
and ®Zn in CuZn, or the diffusion®! of **Fe and
%Fe in Fe-Si alloys.

Within the framework of absolute-rate theory,
departures from Eq. (11) can arise from the neglect
of several effects: (i) velocity correlation (AK ef-
fect); (ii) quantum effects (BSse statistics and tun-
neling); (iii) anharmonicity.

In the cases cited above, the discrepancy has

been attributed to the so-called AK effect, which
we will consider next, with particular reference
to the diffusion of hydrogen.

A. AK Effect

In deriving Eq. (11) from Eq. (13), we had pre-
viously assumed that the mode mass M was equal
to the mass of the diffusing atom. In order to ex-
plain the AK effect, it is necessary to remove this
assumption. For the sake of simplicity, though,
we continue to treat the entire system as coupled
classical harmonic oscillators, ignoring for the
moment any possible quantum effects. The rela-
tionship which defines the isotope effect, viz.,

Eq. (14), was first derived by Mullen'? and also
serves to define AK in terms of measurable param-
eters

T,/Ts—-1=AK[(M,/M)"?-1] . (14)

Following Vineyard’s treatment, Mullen finds
that AK is the ratio of the kinetic energy carried
by the diffusing atom in the transition mode to the
total kinetic energy associated with this mode;
hence, the notation AK. Unfortunately, the source
of the effect is somewhat obscured by the use of
mass-weighted normal coordinates.

LeClaire, * also using mass-weighted normal
coordinates, has provided additional insight into
the source of the effect by relating AK to the atomic
displacements involved in the transition mode. His
expression for AK (valid for small relative changes
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in isotopic mass) was shown to be equivalent to that
derived by Mullen.

Glyde ' has demonstrated that the mass M in
Eq. (13) will be that of the diffusing species, as
long as there is no correlation between the veloc-
ities of different atoms. Such correlations, for
example, could arise from resonance modes, in
the case of a diffusing atom that was substantially
heavier than the matrix, or from lattice strains
associated with the diffusing species.

If the diffusing atom is completely decoupled,
or “there exists no lattice strain, ” then AK is unity
and Eq. (11) is restored. However, a more exact
analysis must take into account the strain field
which accompanies the interstitial atom (or vacancy,
as the case may be). If one now correctly accounts
for the total displacement of both matrix and the
interstitial atom, AK is no longer unity, which is
another way of saying that the mass dependence
must reflect the total displacement of mass.

In a yet more recent derivation (valid for any
mass substitution), Glyde'* avoids the use of mass-
weighted normal coordinates entirely and obtains
Eq. (15), which is more directly applicable to the
data,

1/2 N 27172
I, M [1+M«z:(’iu) ]/
I, M, M “g\d,,

14032 Y] . )

In Eq. (15), d,, is the normalized displacement of
the diffusing atom along the transition normal co-
ordinate p, d;, is the normalized displacement of
atom 7 along p, and M is the mass of the host
atoms. It is clear that, were the displacements

of the lattice atoms null, the terms in brackets
would reduce to unity, yielding Eq. (11) once again.
It is also obvious that when M, < M,, the entire
second term on the right-hand side must be less
than unity and hence, in such a case, the AK effect
can only reduce the predicted value of D,/Dg. In
order to demonstrate the failure of the AK effect
to explain the Ni results, it is necessary to ex-
plicitly calculate ¥ (d,,/d,,)?, which is estimated

in Appendix A. However, the value thus calculated,
viz., Eq. (A6), leads to a correction on the order
of a few tenths of 1%. Consequently, we can dis-
card the AK effect as a possible explanation of the
departure of our results from Eq. (11).

B. Quantum Effects

Let us next examine the consequences of having
used classical rather than the more correct quan-
tum vibrational partition functions in deriving Eq.
(11). This indeed is quite likely to be a poor ap-
proximation for the diffusion of atoms as light as
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hydrogen in metals, since the vibrational level
separations are expected to be of the order of
& ev.

Quantum effects in the harmonic approximation
have been treated by LeClaire, * Ebisuzaki ef al., ®
and Franklin. > All began by using the quantized
harmonic-oscillator partition functions for Z and
Zg in Eq. (10a). Their approaches differed only
in their treatment of v,. For the moment, we will
ignore any quantum effects arising from v,, taking
the classical limit 27/h.

In his treatment, LeClaire* expands the partition
functions in a power series in hv/kT, retaining only
the first two terms. It has been subsequently shown
by EKO ¥ that two terms alone are probably inade-
quate to describe the experimental results over
their temperature range. We will follow them by
retaining all terms and deriving the quantum-me-
chanical analog to Eq. (11) with two additional ap-
proximations. First, the vibrational modes of the
hydrogen are once again assumed to be completely
decoupled from the lattice modes. Second, be-
cause the highest lattice frequencies of Ni and Cu
are ~9x10% and ~7.5x10'2 Hz, respectively, as
determined by neutron diffraction, we may safely
employ classical partition functions to describe
the lattice modes, i.e., within the temperature
range of interest, hv/2kT <} (the error attendant
upon this approximation is less than 1% and will
be much reduced when the ratio of two coefficients
is taken). Making use of these approximations,
we rewrite Eq. (10a) as follows:

3N+3 3N+2
r=(

v/ v:)e'“’“”

i=1 i=1

sinh(hv[/2kT)
hv}/2kT

3 i 2
sinh(hv,/2%T) )

X . (16)
(E hv,/2kT ,I;I, (
With the additional assumption that the local-mode
distribution is isotropic, Eq. (16) finally reduces

to Eq. (17)

- (sinh(hv/ZkT) )’ /(sinh(hv'/ZkT) )2 Can

hv/2kRT hv'/2kT

where I'® is given by Eq. (10b).

Setting 6 =hv/k and ' =hv'/k, and letting £,
= sinh(8/2a'2T)/(6/2a*/*T) and f, = sinh(6'/2a'/2T)/
(6'/2a**T), we obtain the same equation as EKO
for the ratio of the diffusion coefficients

D (ﬁ )1/2 fo 2
Za_(E Lo/,
Dy o fefa '’
where, as before, a, =1, 2,3 for H,D, T, respec-
tively. Because we now possess diffusion data for
tritium as well as hydrogen and deuterium, we can

solve Eq. (18) for the first time without resort to
solubility data.

(18)



| o>

0. 5 ———————"—"—T—"—

o Present
a Eichenauer et al.
o Ebisuzaki et al.

In(D‘/D3)

6 =1350°K
‘\\8' = 2300°K
N\

|-
it

0.2

™~
o
~N
S 0.1 -
c
a
0 o —
o
o N\,
e=1450°K\\ N o
0'= 2660°K N\ AN
\ AN
N\ AN
[ Y || S R R S, N SN
0.8 1.2 1.6 2.0 2.4 2.8
1000/7 (k1

FIG. 4. All available diffusion ratios of [H]/[D] and
[H]/[T] as functions of temperature in Ni. The dotted
lines are the predictions of the harmonic theory. The
solid line is calculated from the anharmonic theory.

Equation (18) provides a good fit to the experi-
mentally determined ratios over the entire temper-
ature range, using the values of 9 and 9’ listed be-
low:

Ni 6y,=3830°K ,
Cu 6¢,=1740 °K ,

fxy=5480 °K ,
0¢u=2980 °K .

It is clearly apparent that the values for Ni are so
large as to be physically unrealistic, whereas those

TABLE III. Values of 8 derived from Eq. (19).

DIFFUSION OF H,,

Isotopic 6 (°K)
ratio Ni Reference
(H]/[D] 1150 2
[(H]/[D) 1350 3
[H]/[D] 1280 14
[H)/[T] 1390 14
[H]/[D] 1400 15

6 °K)

Cu
[(H]/[D] 1600 2
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FIG. 5. All available solubility ratios of [H]/[D] and
[H]/[T] as functions of temperature in Ni. The dotted
lines are the predictions of the harmonic theory for the
values of findicated. The solid line is calculated from
the anharmonic theory (see text).

for Cu appear acceptable. By way of comparison
EKO, ? using solubility as well as diffusion data
for H, and D, only, calculate 6y, =1350 °K and
fx1=2300 °K. These values give a poor although
acceptable fit to our measured values of Dy/Dp,
but completely fail to fit our values of Dy/D (see
Fig. 4).

In principle, both neutron scattering !® as well as
solubility measurements can provide the means of
independently calculating 6; unfortunately, the
neutron scattering experiments have yet to be per-
formed. However, there are several pertinent
solubility studies for Ni? 3! and at least one for
Cu. 2 The solubility ratio [a]/[B] is related to 6
through the following equation (see Appendix B):

[a] fs] 8, (Mz\ G%-G)

ln[—ﬂ— 3 m[,—f] - Eln(;/,—i—) +_£_——E2RT .
The values of 0 derived from Eq. (19) are listed in
Table III. It is apparent that there is no agreement
whatsoever between the values of 8y, derived from
solubility and those derived here solely from dif-
fusion, the latter being about three times larger
than the former. On the other hand, 6, is in
reasonable agreement.

We have compared all the reliable solubility data
with Eq. (19), and the results are shown graphically
in Figs. 5 and 6 for Ni and Cu, respectively, with
the ratio [H] /[D] plotted as In([H]/[D]) vs T"'.
The dotted lines derive from Eq. (19) for the indi-
cated values of 6, and it is clear that a majority
of the measured values for Ni fall between 12060 °K
<0y,<1500 °K, while those for Cu fall between
1400 and 1700 °K. Except at the lowest tempera-
tures, the best fits are obtained with 6y, = 1350 °K,
and 6.,=1600 °K. Based solely on the precision of

(19)
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FIG. 6. Available solubility ratio [H]/[D] in Cu as a
function of temperature. The dotted lines are the predic-
tions of the harmonic theory for the values of 6 indicated.

the fit, we would assign error limits of + 50 °K to
the preceding values.

Using the values of 6 derived from solubility,
we can, from Eq. (18), obtain 6y, = 2620 °K and
9:;,,: 2850 °K from a single adjustable parameter
fit to Dy/Dp and Dy/Dr. These values for 6y, and
Géu reproduce the average values of the ratios at
the midrange of 7! for both Cu and Ni, but give
consistently higher slopes than the measurements
for Ni, as shown in Figs. 4 and 7. Except for the
consistently greater slope for Ni, the fit is within
the experimental limits of error of our measure-
ments. However, the results of EKO? for Ni ex-
tend to much lower temperatures than do ours and
lie several standard deviations away from those
predicted. In summary, Eq. (18) provides a very
poor approximation over the entire range for which
measurements exist in Ni, so poor in fact as to be
regarded as a complete failure.

In addition to the quantum corrections arising
from the vibrational partition functions, we should
also consider those arising from v,. While the
possibility exists that hydrogen transport in Ni,
like that in the bcc metals, is essentially a quantum
phenomenon, both heuristic arguments, ® as well
as a full-scale quantum-mechanical band-model
treatment by Lepski, !® lead to the conclusion that
tunneling will not be the dominant transport mech-
anism in fcc metals at these temperatures.

Quantum corrections to v, can arise from two
sources. First, the level spacings of the partially
bound diffusing atom are coarse with respect to
both 27T and A¢*. This effect will be present apart
from any tunneling and has been considered by
Franklin, 3 who writes v as the ratio of the rms
velocity in the diffusion direction to the deBroglie
wavelength, A =k/(MET)"%. Thus, for the isotropic
local modes considered here, we obtain

Vb, J;TT [2(»/2 )T °°th<z(J§) T )]m , (202)

which reduces to the classical value 27/k for 7 > 6.

A plausible alternative to Franklin’s expression
for vp is to associate v, with the mean energy of
the diffusing mass through the Einstein relation—
i.e., vp=<(E)/h. In this case, we have

kT 0 0
oo, S arreon(zmm)) oo
a correction about twice as large as that given by
Franklin.
Following EKO, % one can take tunneling into ac-
count by multiplying Eq. (17) by a “tunneling cor-
rection factor” (f*)"! given by

"- 6* . 0*
N s oy 7)) (20c)
where 6*=hv*/kT, and v* is related to the mass of
the diffusing atom and the curvature of the potential
along the transition coordinate at the saddle point
in the usual manner. EKO?® argued on geometrical
grounds that v* was so small that any correction
arising from Eq. (20c) is negligible. A simple
estimate based on the screened proton model for
H in Ni indicated that 6*~0.46’. Although the re-
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FIG. 7. All available diffusion ratios [H]/[D] and
[H]/[T] as functions of temperature in Cu. The dotted
lines are the predictions of the harmonic theory.
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sulting correction is small in comparison to the
other quantum corrections, it is not entirely neg-
ligible.

If we write f, for the square bracket in Eq. (20b),
then we obtain the jump frequency of isotope a

To=Ti(f P ()2 (F (Y, (21a)

as a product of the classical jump frequency times
appropriate powers of four quantum correction fac-
tors. For convenience, the four factors and their
series expansions are written below:

+_1_(£)2
240 \T
R LAY
192002\7 /) * ’
’ 9’ -1 ' 1 0’ 2
f"‘(ZN“a)T) s“‘hzw—)r m(?)
1 6"\*
*1920a7 (?) o
1oL (LY
12a T

1 (8Y, ...
“720a2\T) " ’

f”(z(_«%)—f)-‘smhz( 7T !

(21b)

(21c)

fa' = (W%TT‘ ) °°thz(r T

(214)

si=(awarr) e =i (7)

_1 (&)
*19202\7T ) ~

The inclusion of these corrections cannot, how-
ever, resolve the disagreement between theory and
experiment for Ni. Over the temperature range
covered by experiments, only the terms quadratic
in 1/T make any significant contribution to the
values of the correction factors. Thus the inclusion
of f'' and f* will not significantly modify the tem-
perature dependence of the theory.

(21e)

C. Anharmonic Corrections

We can successfully fit the data with absolute-
rate theory only if we assume that 6 increases with
increasing temperature. This is perhaps a reason-
able assumption in view of the fact that even the
value of 6y, derived strictly from the solubility
data (see Fig. 5) appears to increase with temper-
ature. For example, using Eq. (19) and the data
of Sieverts and Danz, !° we calculate 6y, =1350 °K
at 650 °K and 6y, = 1450 °K at 950 °K, an increase
of 100 °K within a 300 °K interval. The first value
corresponds to the midrange temperature of the
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diffusion measurements of EKO, ? and the last cor-
responds to the midrange of our measurements.
Taking these values, as well as the measured values
of the diffusion coefficients, we calculate, by means
of Eq. (18), from EKO?®

04y =1350°K, 6y,=2300 °K at 650 °K ,
and from present work,

0y, =1450 °K, 6y, =2660 °K at 950 °K ,

which illustrates the magnitude of the response of
9;“ to the variation in 6y;.

In the derivation of Eq. (18), explicit assumptions
were made concerning the vibrational properties
of the hydrogen, viz., thatthere are no long-range
H-H or H-Ni interactions and that as a consequence
the local-mode approximation obtains. Also, it
was assumed that the vibrational energy levels are
adequately described by a quantum-mechanical
harmonic oscillator. The first assumption would
appear to be valid in view of the dilute hydrogen
concentration and the large gap in the H-Ni fre-
quencies. The second assumption may not in fact
be justified, and failure of the hydrogen to behave
as a simple harmonic oscillator can account for
the apparent failure of classical rate theory.

We will now examine the consequences of remov-
ing the restriction of harmonicity.

The first nonvanishing correction to the energy
levels of a quantum-mechanical oscillator in a
symmetric one-dimensional potential well is given
by Eq. (22)

E, =Eq+hvo(n +3)+(C/16K2) (hv)? [(n +3)2 +3] , (22)

where v2=K/4n%m, the m being the mass of the
oscillator, and K and C being the first two coef-
ficients in the expansion of the potential
U=Up+gy (AX)2 +— (AX)‘ (23)

In order to explain the large temperature depen-
dence, the energy difference between the first two
level spacings would have to vary by (10-20)%; the
question is now whether such a large anharmonic
effect is justified for H, in Ni. We will attempt to
make just such a justification on the basis of es-
timates derived from the screened-proton model
that appears to at least qualitatively account for
the solubility. 2°

Equation (24) gives the energy of the repulsive
interaction of the Ni ion core with the screened
proton

Eip=A/r)e™ (24)

where 1 is the proton screening parameter, and

v the proton-ion core separation. The constant A
can, in principle, be determined from the nickel
pseudopotential. 2! To conform with Eq. (23), we
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will expand Eq. (24) for hydrogen in an octahedral
site

2
E(r) =E(ry) (1 A X aet gt az)

+}— LY (Ax‘+Ay‘+Az‘)> (25)
4! 3 ’
where 7, is the equilibrium proton-nickel separa-
tion.

In Eq. (25), we have retained only the highest
power of A7, in each order, since for Ni we expect
A7,=~12. We have also neglected a term in Ar*
whose coefficient is small compared to that of
Ax*+ Ay*+ Az, In this approximation then, we
have three independent linear oscillators. Com-
paring Eq. (25) with Eq. (22) we have

K=32E(r), C=3)E(r). (26)

A similar expansion assuming a (111) saddle
point, i.e., midway between the octahedral and
tetrahedral site, leads to

K'=32E'(r)), C'=3$2E'() . (27)

In this case, however, ¢’ is the coefficient of art,
and the energy levels for both saddle-point oscilla-
tions will be given in Eq. (28) (see Ref. 22)

Enpm=Es+hvy(n+1)+(C'/16K"?) (hvq)?
x[n+12+3-3m? , (28)

where +m=n, n-2, n-4, ..., 0or 1,

We now need to correct the harmonic-oscillator
partition functions for the anharmonic terms. In
Appendix C, we show that in terms of the function
fo=sinh(u/2Va )/(u/2Ve ) we can write

_1=_1_ _2xu 1 -xu/2a
Fohe (-2 ) (29)

where u=hvy/kT=6/T, and vy=(K/412M)'/? is the
frequency of the unperturbed harmonic oscillator.

The calculated solubility and diffusivity ratios
can be corrected for anharmonic effects by sub-
stituting f, [from Eq. (29)] for f in Eqs. (19) and
(21a), respectively. For the solubility, we obtain,
making the obvious substitutions and using

In(1+4)=2 4,

[e]_, [e]] _83¢(1 1 ¢ 1/1 1
a1 el] ZT(a B>+6T Zf(fa F) (80)
with

¢ =1%C/16kKmy ,
where
my =hydrogen mass, k=Boltzmann constant.

(31)

At high temperatures (i.e., 726), the last term
in Eq. (30) can be evaluated by expanding f, and fg
(e.g., fo=1+(1/a) w?/24)+--+), giving z(¢/T)
X(1/a-1/p). At low temperatures the last term
vanishes. Thus, the anharmonic correction depends
only on ¢, varying from - (¢/7)(1/a- 1/8) at high
temperatures to - 3 (¢/7T)(1/a - 1/p) at low tem-
peratures.

Substituting the values of C, C', K, and K " from
Egs. (26) and (27), we have

¢ =n%/16kmy, ¢ =10. (32)

Using primes to denote quantities associated
with the saddle-point configuration, making use of
Eq. (29) and the modification for the saddle point
given in Appendix C, we obtain, for the diffusivity

ratio,
(pe-s3)-3)
-of 3(G) - ()]
4l ;12[(3};)_( fi)] . (39

Proceeding as before, the correction will be ap-
proximately [- (¢’ - ¢)/T](1/a - 1/p) at high tem-
peratures and - ($¢ -3 ¢)(1/7) (1/a - 1/8) at low
temperatures.

Thus, the anharmonic corrections depend only

on the screening parameter \ given approximately
by 2028

A2=4me?N, , (34)

D, . D
Yo_1nZea
Inje=lnze

where Nj is the density of states at the Fermi level.
If Ny is estimated on a free-electron model from
the low-temperature electronic specific heat, then
% =7.2 A"! for Ni, and 2y=2.2 A"! for Cu. 2 Sub-
stituting these values in Eq. (32), we find that

¢ =156 °K for Ni, and ¢ =16 °K for Cu.

D. Comparison with Experiment

Using a value of ¢ =160 °K and 6 = 920 °K, one
can make a reasonable fit to all the available sol-
ubility data for Ni, producing the solid curve in
Fig. 5.

Whereas 6 and ¢ are measurable physical prop-
erties of the system, 6', 6* and ¢’ have meaning
only through their relation to the derivatives of the
potential at the saddle point, and must be inferred
from experiment or calculated from a suitable
model. Using the simple model developed above,
we expect 6'~36 and 6*~0.46’. An estimate of
relaxations around the hydrogen will reduce both
values to 6'~26 and §*~0.356’. Thus 6* would ap-
pear to be small enough so that f*~1 over the tem-
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perature range of interest.

Using 6 =920 °K, ¢ =160 °K, and 6*=36’, the
theory expressed by Eq. (33) was fit to our data by
adjusting 6’ and ¢’. A good fit is obtained for
6'=2100 °K and ¢’ =340 °K. The result shown in
Fig. 6 is a substantial improvement over the har-
monic theory. Although 6’ is about as expected,
¢’ is nearly three times as large as the predicted
value of 120 °K.

The relative success of the simple model pre-
sented here in accounting for the mass dependence
of hydrogen diffusion in Ni and Cu would indicate
that a direct calculation of the diffusion coefficient
may be possible, for example, through the formal-
ism developed by Franklin. °

No attempt has been made to adjust the Cu fit,
since the corrections are well within the experi-
mental uncertainties.

We note that the value of 6 =920 °K will not cor-
respond to a measurable local-mode frequency,
since it corresponds to a hypothetical harmonic
oscillator. Neutron diffraction measurements
would, for example, measure the first actual level
spacing, i.e., 6 +2¢=1230 °’K. Commenting on
this aspect, we might also note that the measure-
ment of higher harmonics should allow a determi-
nation at both 6 and ¢.

V. SUMMARY

Absolute-rate theory in its proper quantum-
mechanical form provides an acceptable descrip-
tion for the diffusion of hydrogen in Cu, but ap-
parently fails for Ni. Arguments are provided
that attribute this seeming failure not to absolute-
rate theory per se, but to the harmonic approxima-
tion, which is universally employed. This approx-
imation holds for the diffusion of hydrogen in Cu,
but not in Ni, which is consistent with the differ-
ence in the screening parameter. It is obvious
thatthe inclusion of anharmonic terms improves the
fit between theory and experiment, although the
detailed knowledge of the H-Ni interaction neces-
sary to make the results exact is self-evidently
lacking. It is postulated that the harmonic approx-
imation will prove inadequate for all close-packed
metal systems in which the density of states at the
Fermi surface is comparable to that of Ni.

It is noteworthy that all three isotopes of hydrogen

were necessary in order to reveal the discrepancy
between theory and experiment. If one calculates
6 and 6’ using diffusion data for but two isotopes,
for example, H, and D,, this yields in combination
with solubility data an acceptable fit for the self-
same two isotopes, but not, as we have shown, for
the third. It is consequently necessary to obtain
data on all three isotopes in order to reveal the
suitability of the harmonic approximation.

It is apparent that neither the AK effect nor tun-

neling can have a detectable influence upon the dif-
fusion. The latter phenomenon may, of course,
become significant at temperatures much below
those of this investigation.

APPENDIX A

The displacement resulting from a point source
of expansion (e.g., a hydrogen atom) is given by %*
U=(60/417%T , (A1)

where 6v is the source strength.
If we displace the source by A7, the displace-
ment becomes

U'=(5v/4nr') T, (a2)

where ¥ =% - AF. The resulting displacement of
surrounding material is thus

d=i'-d . (a3)

The relative displacements appearing in Eq. (16)
are thus

dy, d-AF
4y BrE (ad)

and we can write

N 2 EY»1 =\2
d—ﬂ) —f (—7—d'Ar) v (A5)
{Zﬂ(dlb 10 A VA ?
where V, is the atomic volume.

Using spherical coordinates with AT along z and
making use of Eqs. (A1)-(A4), Eq. (A5) can be
written
N 2

d (6v)?
_'12 =
%)1(‘11;) 167V, (A7)

xj]f ”(rcose N rcosG)"‘
reosy ASr rees?
o r r 7

x7?sinfdrdéd¢ . (AB)

Since »'2=72—-2r Arcos6 + Ar2, we integrate (A6),
obtaining as AT -0

N 2 2
d ) 4 (5v) A
(%) -2 20 n
m<d1p 45 V, V7, (A7)

where V, is the excluded volume (4 77J) .

Before proceeding, we need an appropriate value
for V,. It can certainly be no smaller than the
volume of an octahedral hole in the fcc lattice and
is thus greater than 2V ,.

For hydrogen in nickel,?® 6v/V,=~0.3, and we
have the result

N 2
dy ), 1
‘?,(dl,) <6 - (a8)
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APPENDIX B

Consider the reactions

$H, +n Ni=HNi, , (B1a)
3D, +m Ni =DNip, , (B1b)
3T, +pNi=TNi, , (B1c)

where these equations represent the reaction of
hydrogen with Ni to form a dilute solid solution.
We may write at equilibrium

by = % GHZ ’ (Bza)
IJ'D=%GD2 ’ (B2b)
#T=%GT2 ’ (B2c)

where the p; are the chemical potential, or, in
another nomenclature, the partial molar free en-
ergy of the dissolved hydrogen and G; are the free
energies of the corresponding gas. We now write
the appropriate expressions for both the solid and
gas phases and, making use of the foregoing equal
ities, obtain (assuming ideal solutions)

u,,:p‘,;+RTln[H]=%(G‘;,2+RTlnPH2), (B3a)
un:p%+RT1n[D]=§(G‘},2+RT1nPDa), (B3b)
uT=u9p+RT1n[T]=%(G‘-}2+RT1nPT2) . (B3c)

Under standard conditions,
Py, =PD2=PT2 =1.

We can now subtract Eqs. (B3), pairwise, to
obtain, for example,

Bi-up+RTIn[H]/[D]=2(G},-G},) .  (B4)

We must now select a standard state for the
hydrogen and characterize the state corresponding
to ud, nd, and 1%. The latter are conveniently
taken as the chemical potential of hydrogen dis-
solved in Ni at infinite dilution. By subtracting
pd from n§, we are left with only that portion of
the free energy which depends solely upon the
mass, i.e., the chemical effects to a first approx-
imation cancel. If we take as the standard state
the individual gaseous atoms H, D, and T at rest,
we have thus chosen Gy =Gp =G in the standard
state. Hence,

3N+3 -an/kT

u%—u%=RT1n(n T ,k,/

3N+3 -m?/zu‘
Il 1<)
(B5)

If we now assume that the hydrogen is completely

decoupled from the host crystal, we can rewrite
Eq. (B5)

3
-pup==RT2ZIn
i=1

[sinh(hv?/ZkT)] . (B6)

sinh(kvE /2% T)

GUINAN, AND BORG 4

Now, assuming a completely symmetric parabolic
potential energy well for the hydrogen, we can
write

sinh(zv/V2kT) ] ‘ (B7)

0 0 __
Hu=Hp= 3RT1"[ sinh(hv/%T)

Following EKO ® this may be conveniently written

pE - p f6/¥27) ] &
L n__31n[ 7@/ :|+21n2 (B8)
where
6\ _2sinh(6/27)
f(?)‘ 0/T

and 6 =hv/k. Substituting into Eq. (B4) and ex-
plicitly taking account of the standard state, we
finally obtain for the ratio of the solubilities

f6/V27)

1 AGY,
f(6/7)

s N
-3In2+5; 2 "2
2 2 RT
(B9)
See Ref. 26 for the values for the last term on the
right-hand side of (B9).

APPENDIX C

(H] _
ln[—]ﬂ' 3In—F—F—+—

The partition function for an anharmonic linear
oscillator is

qa=2ine BT, (c1)
where E, is given by Eq. (22). This can be written
as

que-ulz e-uxlz Z;n e-nle.n(nol)ux , (cz)

where, asbefore, u=hv/kT and x=¢/6. By expand-
ing the second exponential and ignoring terms of

order x?, we have
ga=eY2e ™2y "™ (1 — nPux — nux) . (c3)
Since ¥, ™=(1-¢"*!, the sums involving powers

of n can be evaluated by noting that

—%(Z} ""‘) =2ine™,
(c4)
“;2' (?e'"“) = nfe™™ .

Making use of (C4), we can write

ga=e2(1-e "Y' [1-2xue(1-e¥y2e ™2,

(C5)

We note that this differs from the usual expres-
sion?" for an anharmonic oscillator, since we have
expressed g in terms of the frequency of the un-
perturbed harmonic oscillator instead of that as-
sociated with the first-level spacing of the anhar-
monic oscillator.

The partition function for a harmonic oscillator
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is q‘" ___e-u'e-llau’x'z En e-nu'e-n(mz)u'x'edlsmu'x‘ .
n
g=e"?(1-e) '=(2sinhzu)" . (ce) (C9)
. < -1_ .
Since the function f™* =uq, we can rewrite Eq. Expanding the last exponential, we have

(C5) as

11 2% 1) ws2 TS (142 mPu'x’)

—=2(1-=>3)e . (c7 m 3

fa f< u f*
The cube of this expression is appropriate for =n+1)[1+3n+2)u'x"] , (C10)

hydrogen in the equilibrium configuration, since
the dominant anharmonic correction was ~ (Ax*
+Ay*+ Az%), thus allowing the three equilibrium
modes to be treated independently.

In the saddle point, however, the dominant an-
harmonic term becomes ~ (Ax? + Ay?)? rather than
~(Ax* + Ay*). Thus we need to evaluate the partition
function for an anharmonic two-dimensional oscil-
lator given by

da= T BT
n,m

(cs)

where E, n is given by Eq. (28). Thus,

since m=+(, n-2, n—4, ..., 0o0r 1). The sum
was evaluated as a second-order arithmetic pro-
gression. Proceeding as before, we obtain

q;=e-u'(1 _e-u')-Z[l - 4uxe-u'(1 — e-u')-Z] e-4u‘x‘/9 s

(C11)
or, in terms of f,
1 1 %1\ awsus
f:"_?z<1—4u7")e . (c12)
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